skip to main content


Search for: All records

Creators/Authors contains: "LeDoux, Joseph E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. A major issue in neuroscience is the poor translatability of research results from preclinical studies in animals to clinical outcomes. Comparative neuroscience can overcome this barrier by studying multiple species to differentiate between species-specific and general mechanisms of neural circuit functioning. Targeted manipulation of neural circuits often depends on genetic dissection, and use of this technique has been restricted to only a few model species, limiting its application in comparative research. However, ongoing advances in genomics make genetic dissection attainable in a growing number of species. To demonstrate the potential of comparative gene editing approaches, we developed a viral-mediated CRISPR/Cas9 strategy that is predicted to target the oxytocin receptor (Oxtr) gene in >80 rodent species. This strategy specifically reduced OXTR levels in all evaluated species (n= 6) without causing gross neuronal toxicity. Thus, we show that CRISPR/Cas9-based tools can function in multiple species simultaneously. Thereby, we hope to encourage comparative gene editing and improve the translatability of neuroscientific research.

     
    more » « less
    Free, publicly-accessible full text available June 2, 2024
  2. Abstract

    The ability to learn about threat and safety is critical for survival. Studies in rodent models have shown that the gut microbiota can modulate such behaviors. In humans, evidence showing an association with threat or extinction learning is lacking. Here, we tested whether individual variability in threat and extinction learning was related to gut microbiota composition in healthy adults. We found that threat, but not extinction learning, varies with individuals’ microbiome composition. Our results provide evidence that the gut microbiota is associated with excitatory threat learning across species.

     
    more » « less
  3. null (Ed.)